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Abstract

We assume that spacetime is embedded in a Minkowski space and the metric on spacetime is
induced by the Minkowski metric. Expansion of spacetime causes a redshift that corresponds
to the usual cosmological redshift of general relativity. Changing expansion velocity also
affects the redshift and introduces an additional term that is not included in the redshift
effect attributed to general relativity. This extra contribution may explain the difference
between astronomical data and the redshift predictions of general relativity.

We want to determine the redshift of photons on a spacetime manifold that is embedded in a
Minkowski space and has the induced metric. We find that some of the redshift is due to the
expansion of the spacetime manifold and this redshift is equivalent to the redshift in general
relativity. There is, however, an additional contribution to the redshift that results from the
changing velocity of the expansion rate. This extra contribution may explain the difference
between astronomical data and the redshift predictions of general relativity.

We will use a toy model such that the Minkowski space is 2+1 with polar coordinates (t, ρ, θ)
and the spacetime manifold is an embedded 1+1 manifold. Because photons travel 1-dimensional
paths, this model will be adequate to describe a photon’s path and its redshift. Let each constant
t slice of spacetime be a circle centered at the origin with radius r(t). Then the manifold is
embedded as (t, r(t), θ). The cosmology of this universe corresponds to change of the radius r.
An expanding universe has an increasing radius, ṙ > 0.

Because the speed of light is 1, a photon’s wavelength λ is equal to the time delay between the
front edge of the photon and its back edge. At the time of departure, the photon has wavelength
λ1 and at the time of arrival the photon has wavelength λ2. The front edge of a photon travels a
path pf (t) that departs at (t1, r(t1), θ1) and arrives at (t2, r(t2), θ2). The back edge of the photon
travels a path pb(t) that departs at (t1+λ1, r(t1+λ1), θ1) and arrives at (t2+λ2, r(t2+λ2), θ2).

For a path p(t) = (t, r(t), ϕ(t)) the arc length is

L(p) =

∫ √(
r(t)ϕ̇(t)

)2
+ ṙ(t)2 dt (1)

The difference of the path lengths for front and back edges of the photon is L(pb)−L(pf ). This
difference is also equal to the change in wavelength, L(pb)− L(pf ) = λ2 − λ1.
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Using the fact that the speed of the photon is always 1, we have(
r(t)ϕ̇(t)

)2
+ ṙ(t)2 = 1 (2)

Some of the velocity of the photon is in the angular direction and corresponds to r(t)ϕ̇(t). Some
of the velocity of the photon is in the radial direction and corresponds to ṙ(t). Because the speed
is always 1, if more of the photon velocity is in the radial direction then less of the velocity is
in the angular direction and this implies that it takes the photon more time to proceed from
angular coordinate θ1 to θ2. A changing radial velocity ṙ(t) may cause the back edge of the
photon to require a different amount of time to travel from θ1 to θ2 compared to the front edge.
The back edge is delayed from the front edge by λ1 at departure and λ2 at arrival. We can solve
for the redshift, which is the ratio λ2/λ1.

ϕ̇(t) =

√
1− ṙ(t)2

r(t)
(3)

∫ t2

t1

ϕ̇(t) dt = θ2 − θ1 =

∫ t2+λ2

t1+λ1

ϕ̇(t) dt (4)

∫ t2+λ2

t1+λ1

ϕ̇(t) dt−
∫ t2

t1

ϕ̇(t) dt = 0 (5)

We say that ϕ̇(t) is approximately constant in the interval between t1 and t1 + λ1 and also
approximately constant in the interval between t2 and t2 + λ2. Then we can approximate∫ t2+λ2

t1+λ1

ϕ̇(t) dt−
∫ t2

t1

ϕ̇(t) dt ≈ λ2ϕ̇(t2)− λ1ϕ̇(t1) = 0 (6)

From this we derive that the redshift is the ratio of wavelengths

λ2

λ1
≈ ϕ̇(t1)

ϕ̇(t2)
=

r(t2)
√
1− ṙ(t1)2

r(t1)
√
1− ṙ(t2)2

(7)

The redshift of general relativity is
λ′
2

λ′
1

=
r(t2)

r(t1)
(8)

and the additional factor of equation (7) may be useful for distinguishing between cosmological
models in which the universe is either embedded in a larger space or not.
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