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We develop a cosmological framework in which spacetime is treated as a four-dimensional man-
ifold dynamically embedded in a higher-dimensional flat Minkowski background. Ultrarelativistic
motion of the embedded manifold induces strong time-dilation effects between embedding time and
proper time, generating a genuine phase of inflation with strict exponential expansion for comoving
observers, without invoking an inflaton field or scalar potential. The inflationary phase satisfies the
defining kinematic criteria, including a shrinking comoving Hubble radius, and admits a natural
graceful exit as time dilation weakens. At late times, large-scale embedding dynamics give rise to a
geometric expansion attractor that yields sustained cosmic acceleration without a bare cosmological
constant. More generally, the attractor can be quasi-stationary, allowing a slow weakening of the
effective acceleration rate while remaining non-phantom. Small deviations from uniform embedding
motion excite long-wavelength co-dimensional modes that generate subdominant oscillatory correc-
tions to the expansion rate. We derive the structure of linear perturbations arising from embedding
fluctuations and show that they naturally produce nearly scale-invariant curvature perturbations
with a suppressed tensor-to-scalar ratio. This framework provides a unified geometric origin for
inflation, primordial structure, and late-time acceleration, without new fields or fine tuning.

I. INTRODUCTION

The accelerated expansion of the Universe appears
twice in its history: an early inflationary epoch and the
present phase of late-time cosmic acceleration. In the
standard cosmological paradigm these phenomena are at-
tributed to distinct sources—an inflaton field in the early
Universe and dark energy or a cosmological constant at
late times—whose microscopic origin remains unknown.
Despite their phenomenological success, these explana-
tions introduce new degrees of freedom and severe nat-
uralness problems, including the origin of the inflaton
potential, the smallness of the vacuum energy, and the
apparent coincidence between matter and dark-energy
densities.

An alternative viewpoint is that cosmic acceleration
reflects the geometry of spacetime itself. In embedding-
based approaches to gravity, spacetime is treated not as
an abstract four-dimensional manifold but as a dynam-
ical surface embedded in a higher-dimensional ambient
space. In this picture, intrinsic curvature is insepara-
bly linked to extrinsic geometry, and the dynamics of
spacetime may depend on how it bends and moves within
the higher-dimensional background. This idea was intro-
duced by Regge and Teitelboim, who showed that Ein-
stein gravity can be formulated as an embedding theory
subject to additional constraints [1]. While embedding
gravity has been explored primarily as a reformulation of
general relativity or in brane-world scenarios [10, 12, 13],
the direct cosmological role of collective bulk motion
and co-dimensional fluctuations has remained largely un-
tapped.

In this work we show that the embedding geometry of
spacetime provides a unified explanation for both early-
and late-time cosmic acceleration. Inflation arises from
the ultrarelativistic motion of the spacetime manifold in

the bulk, which induces strong gravitational time dila-
tion between embedding time and proper time. This ef-
fect leads to strict exponential expansion as measured by
comoving observers, without introducing an inflaton field
or scalar potential.

At late times, large-scale embedding dynamics give rise
to a geometric expansion attractor that produces sus-
tained acceleration without invoking a bare cosmologi-
cal constant. By a geometric attractor we mean a fixed
point of the embedding-induced background evolution to-
ward which the Hubble rate flows once matter and radi-
ation have sufficiently diluted. In its simplest realization
the attractor is stationary, corresponding to an approxi-
mately constant Hubble rate, but more generally it can
be quasi-stationary, allowing slow temporal evolution of
the effective acceleration while remaining non-phantom.

Small deviations from uniform embedding motion
naturally excite long-wavelength co-dimensional modes,
leading to subdominant oscillatory corrections to the ex-
pansion rate. A key feature of this framework is the natu-
ral separation between a dominant stationary component
of the expansion, which sets the mean cosmic timescale,
and a small oscillatory component associated with em-
bedding fluctuations. For intuition, these may be referred
to as the DC and AC components of the expansion, re-
spectively. These components originate from different
aspects of the embedding dynamics and are only weakly
constrained by one another at the level of background
evolution. As a result, the age of the Universe and the
magnitude of late-time acceleration need not be tightly
linked, in contrast to many dark-energy models.

This paper is organized as follows. In Sec. II we intro-
duce the geometric framework of embedded spacetime
and define the relevant kinematic quantities. In Sec. III
we show how embedding-induced time dilation leads to a
genuine phase of inflation with strict exponential expan-
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sion and a natural graceful exit. In Sec. IV we discuss
the post-inflationary background evolution. In Sec. V we
describe the emergence of late-time acceleration and the
stationary plus oscillatory decomposition of the Hubble
rate. In Sec. VI we analyze linear perturbations aris-
ing from embedding fluctuations and outline their obser-
vational consequences. We conclude in Sec. VII with a
discussion of open questions and future directions.

A. Choice of time slicing: embedding time vs.
brane proper time

An important subtlety in embedded cosmology is that
the notion of “the size of the Universe at a given time”
depends on the slicing used to foliate the spacetime
worldvolume. Two natural choices exist. (i) Constant
embedding-time slices t = const correspond to the center-
of-mass frame of the embedded manifold in the ambient
space. (ii) Constant proper-time slices τ = const corre-
spond to the physical rest frame of comoving observers
on the spacetime manifold.

During the ultrarelativistic phase relevant for infla-
tion, these two slicings are geometrically inequivalent.
Embedding-time slices cut the worldvolume in sections
whose physical size grows only linearly, a(t) ∝ t, and
therefore do not exhibit accelerated expansion. By con-
trast, proper-time slices intersect the same worldvolume
at an angle that is nearly tangent to the ambient light
cone. As a result, equal increments of proper time corre-
spond to exponentially large changes in the spatial sec-
tion, yielding strict exponential expansion a(τ) ∝ eHτ .

This geometric distinction resolves the apparent am-
biguity in defining expansion during ultrarelativistic mo-
tion. Physical observables are always measured with re-
spect to proper time τ , and only the τ -slicing corresponds
to the expansion history seen by comoving observers.
The embedding-time description serves as an auxiliary
tool for understanding bulk kinematics and time-dilation
effects, but does not define physical cosmological time.

This causal-structure picture of near-lightlike inflation
and extrinsic-curvature-driven exit is illustrated in Fig. 1.

II. INFLATION FROM EMBEDDING-INDUCED
TIME DILATION

In this section we show that a genuine phase of cos-
mic inflation arises naturally from the kinematics of em-
bedded spacetime, without introducing an inflaton field,
scalar potential, or slow-roll conditions. The mechanism
relies on strong time dilation between embedding time
and proper time, induced by ultrarelativistic motion of
the spacetime manifold in the ambient space. Through-
out this section we work in units where c = 1.

A. Ultrarelativistic bulk motion and lapse
suppression

Consider an early configuration in which the spatial ex-
tent of the embedded spacetime manifold is microscopic,
and its collective motion in one or more directions normal
to the manifold is ultrarelativistic. Let Y (t) denote a rep-
resentative transverse embedding coordinate and define
the corresponding bulk velocity

v ≡ dY

dt
. (1)

Along comoving worldlines on the manifold, the induced
line element takes the form

dτ2 = dt2
(
1− v2

)
, (2)

so that the lapse function relating proper time τ to em-
bedding time t is

N(t) ≡ dτ

dt
=

√
1− v2. (3)

When the bulk motion is ultrarelativistic, v ≃ 1, the
lapse is strongly suppressed, N ≪ 1. As a result, the
proper time experienced by observers comoving with the
spacetime manifold advances extremely slowly compared
to the embedding time. Physically, this corresponds
to strong gravitational time dilation between the am-
bient frame and the embedded spacetime. During this
phase, neighboring regions of the manifold have very lit-
tle proper time to interact causally, and the spacetime
evolves almost freely as a coherent object in the higher-
dimensional background.

B. Embedding-time expansion versus physical
expansion

We define the expansion rate with respect to embed-
ding time as

H(t) ≡ 1

a

da

dt
, (4)

while the physical Hubble rate measured by comoving
observers is defined with respect to proper time,

H(τ) ≡ 1

a

da

dτ
. (5)

Using the relation dτ = N(t) dt, these quantities are re-
lated by the exact identity

H(τ) =
H(t)

N(t)
. (6)

It is crucial to emphasize that accelerated expansion
arises only when the Universe is foliated by constant-
proper-time slices. On constant embedding-time slices,
the scale factor grows only linearly, a(t) ∝ t, and no in-
flation occurs. The physical expansion history measured
by observers is therefore determined entirely by the be-
havior of H(τ), not by H(t) alone.
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FIG. 1. Schematic illustration of inflation and graceful exit in embedded-spacetime cosmology. The spacetime manifold expands
in a higher-dimensional flat ambient space and lies close to an ambient light cone during the inflationary phase. Strong time
dilation (N = dτ/dt ≪ 1) magnifies modest embedding-time expansion into strict exponential growth in proper time. Inflation
ends when extrinsic-curvature feedback slows bulk motion, restoring proper-time flow and causal communication. Points a
(early) and b (late) illustrate compressed vs. expanded causal histories; the growth of causal regions with proper time is
exponential due to the same geometric feedback.

C. Conditions for exponential inflation

A key observation is that the embedding-time expan-
sion rateH(t) is controlled by smooth, large-scale embed-
ding dynamics and need not be large or rapidly varying.
In particular, during the ultrarelativistic phase the em-
bedding equations admit solutions in which

H(t) ≃ Hinf = const, (7)

over an extended interval of embedding time. Such
near-constant behavior is natural in the ultrarelativis-
tic regime where extrinsic-curvature feedback is initially
negligible, analogous to free coherent motion of the man-
ifold in the bulk.

If, simultaneously, the lapse is strongly suppressed but
slowly varying,

N(t) ≃ Ninf ≪ 1,
Ṅ

N
≪ Hinf , (8)

then the physical Hubble rate becomes

H(τ) ≃ Hinf

Ninf
≡ Hinf = const. (9)

Thus a modest, smooth expansion in embedding time is
magnified into a large, approximately constant Hubble
rate in proper time by the smallness of the lapse.

D. Exact exponential solution for the scale factor

We now show explicitly that a constant physical Hub-
ble rate H(τ) = Hinf implies strict exponential expan-

sion. By definition,

H(τ) =
1

a(τ)

da(τ)

dτ
. (10)

If H(τ) = Hinf = const, this equation becomes

da(τ)

dτ
= Hinf a(τ). (11)

Dividing both sides by a(τ) and integrating yields∫ a(τ)

ai

da′

a′
=

∫ τ

τi

Hinf dτ
′, (12)

so that

ln

(
a(τ)

ai

)
= Hinf(τ − τi). (13)

Exponentiating both sides gives the exact solution

a(τ) = ai exp
[
Hinf(τ − τi)

]
. (14)

Choosing the normalization ai = 1 at τi = 0 yields

a(τ) ∝ eHinfτ . (15)

The inflationary phase generated by embedding-induced
time dilation is therefore strictly exponential in proper
time, not merely approximately de Sitter. Because Hinf

is approximately constant, the comoving Hubble radius
decreases,

d

dτ

(
1

aH

)
< 0, (16)

satisfying the defining criterion for inflation and resolving
the horizon and flatness problems in the usual way.
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E. Number of e-folds and graceful exit

The total number of e-folds accumulated during infla-
tion is

Ne ≡ ln

(
af
ai

)
=

∫ τf

τi

H(τ) dτ. (17)

Using dτ = N(t) dt together with Eq. (6), this can be
written purely in terms of embedding-time quantities,

Ne =

∫
H(t) dt. (18)

Thus sufficient inflation requires only that the
embedding-time expansion rate remain approximately
constant over a sufficiently long interval of embedding
time. The duration of inflation in proper time can be
arbitrarily short when the lapse is strongly suppressed.

Inflation ends naturally when the ultrarelativistic bulk
motion slows and the lapse increases toward unity. As
N(t) grows, the physical Hubble rate H = H/N de-
creases even if H(t) remains smooth, and causal interac-
tions between neighboring regions become efficient. The
expansion then transitions smoothly to a decelerating
Friedmann–Robertson–Walker phase without requiring a
separate reheating field.

III. POST-INFLATIONARY BACKGROUND
EVOLUTION

Following the ultrarelativistic phase described in
Sec. III, the embedding dynamics naturally lead to a
transition from inflation to a standard decelerating cos-
mological expansion. This transition occurs without the
need for additional fields or fine-tuned conditions and is
driven entirely by the relaxation of time-dilation effects.

A. Recovery of standard FRW evolution

Inflation ends when the collective bulk motion of the
spacetime manifold slows and the lapse function N(t)
increases toward unity. As N(t) → 1, the distinction
between embedding time t and proper time τ becomes
negligible. The physical Hubble rate reduces smoothly
to

H(τ) ≃ H(t), (19)

and the expansion history becomes governed primarily
by the intrinsic energy content of the spacetime mani-
fold. Provided that conventional matter and radiation
are produced during or shortly after the end of the infla-
tionary phase, the subsequent evolution follows the stan-
dard Friedmann–Robertson–Walker (FRW) behavior. In
particular, the scale factor evolves as

a(τ) ∝

τ1/2, radiation domination,

τ2/3, matter domination,
(20)

up to small corrections associated with residual embed-
ding dynamics. Importantly, the inflationary mechanism
described here does not modify the intrinsic gravitational
field equations governing late-time FRW evolution. Be-
cause inflation is driven purely by time-dilation effects
rather than by a large intrinsic energy density, standard
cosmological behavior is recovered without tuning or ad-
ditional assumptions.

B. Persistence of embedding memory

Although the lapse function relaxes to order unity af-
ter inflation, the embedding geometry of spacetime need
not become dynamically trivial. The collective configu-
ration of the spacetime manifold in the ambient space
retains memory of its early evolution, encoded in con-
served or slowly varying geometric quantities associated
with the embedding. Small deviations from perfectly ho-
mogeneous embedding motion, seeded for example during
the exit from inflation, can excite co-dimensional modes
with extremely long wavelengths. Because these modes
correspond to collective deformations of the spacetime
manifold rather than to local field excitations, they are
not efficiently damped by cosmic expansion and can per-
sist over cosmological timescales.

During radiation and matter domination these residual
embedding degrees of freedom are dynamically subdom-
inant. However, they constitute a reservoir of geometric
structure that can become relevant once conventional en-
ergy densities have sufficiently diluted.

C. Prelude to late-time acceleration

At the level of background evolution, the post-
inflationary Universe therefore enters a regime character-
ized by a clear separation of timescales. Early inflation
is controlled by the strong time dilation associated with
ultrarelativistic bulk motion, while the intermediate cos-
mological eras are governed by standard FRW dynamics.

Late-time acceleration emerges when matter and ra-
diation have diluted enough for the residual embedding
geometry to dominate the expansion. In the next sec-
tion we introduce an explicit geometric effective descrip-
tion of these late-time embedding dynamics and show
how they naturally give rise to a stationary (or quasi-
stationary) expansion attractor and a decomposition of
the Hubble rate into dominant and subdominant com-
ponents. This separation ensures that inflation, stan-
dard cosmological evolution, and late-time acceleration
arise as distinct dynamical regimes of a single underlying
structure: a four-dimensional spacetime manifold evolv-
ing in a higher-dimensional flat background.
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IV. GEOMETRIC ACTION AND LATE-TIME
ACCELERATION

A. Origin of the embedding equations of motion

The cosmological dynamics discussed in this work arise
from treating spacetime as a four-dimensional manifold
dynamically embedded in a higher-dimensional flat back-
ground. The fundamental variables are the embedding
functions XA(xµ), from which both the induced metric
gµν and the extrinsic curvature KI

µν are constructed.
At the effective level, the dynamics may be obtained

from a geometric action of the generic form

S[XA] =

∫
d4x

√
−g

[
M2

Pl

2
R+ Lgeo(K

I
µν) + Lm

]
, (21)

where Lgeo denotes the leading large-scale invariants
built from the extrinsic curvature. Actions of this type
arise naturally in the theory of embedded and rigid man-
ifolds and include, as limiting cases, Regge–Teitelboim
embedding gravity and Polyakov-type rigidity terms.

Variation with respect to the embedding functions
yields equations of motion of the schematic form

∇µ

(
Πµν

I ∂νX
I
)
= 0, (22)

where Πµν
I is a geometric stress tensor constructed from

gµν and KI
µν . For homogeneous and isotropic embed-

dings, these equations reduce to coupled evolution equa-
tions for the scale factor a(τ) and the collective bulk co-
ordinates describing motion in the normal directions.

Two structural features of these equations are essen-
tial for the cosmological behavior emphasized here. First,
ultrarelativistic solutions generically exist in which the
embedding-time expansion rate remains smooth while
the lapse N = dτ/dt is strongly suppressed, leading kine-
matically to strict exponential expansion in proper time.
Second, the geometric sector admits stationary or quasi-
stationary solutions at late times, corresponding to fixed
points of the embedding dynamics once matter and radi-
ation dilute.

The inflationary phase therefore arises primarily from
embedding-induced time dilation and does not rely on
the detailed form of Lgeo. By contrast, the existence of a
sustained late-time accelerating phase requires additional
large-scale geometric structure, which we capture mini-
mally through extrinsic-curvature invariants or, equiva-
lently, conserved geometric charges associated with the
embedding.

B. Effective geometric action

We consider an effective action of the form

S =

∫
d4x

√
−g

[
M2

Pl

2
R+ αKI

µνK
I µν + β KIKI + Lm

]
,

(23)

where R is the Ricci scalar of the induced metric gµν ,
KI

µν is the extrinsic curvature in the Ith normal direc-

tion, KI ≡ gµνKI
µν , and Lm denotes the Lagrangian for

conventional matter and radiation. The coefficients α
and β parametrize the rigidity of the embedded space-
time manifold and have dimensions of length squared.
Actions of this type are well known in the theory of em-
bedded surfaces and rigid branes and arise naturally as
effective descriptions of collective geometric degrees of
freedom.
Throughout this work the ambient spacetime is taken

to be flat; all curvature effects originate from the em-
bedding of spacetime itself. The Einstein–Hilbert term
governs intrinsic geometry, while the extrinsic curvature
terms encode the resistance of the spacetime manifold
to bending and deformation in the higher-dimensional
background. We emphasize that the specific values of α
and β are not essential for the qualitative results that
follow. What matters is the structural fact that the ge-
ometric sector contributes terms proportional to H2 to
the background evolution, thereby admitting stationary
or quasi-stationary solutions.

C. Homogeneous background equations

For homogeneous and isotropic embeddings, the ex-
trinsic curvature in each normal direction is proportional
to the induced metric,

KI
µν ∝ H gµν , (24)

so that the quadratic extrinsic curvature invariants con-
tribute effective terms scaling as H2. Varying the ac-
tion (23) with respect to the induced metric yields mod-
ified Friedmann equations of the schematic form

3M2
PlH

2 = ρm + ρr + ρgeo, (25)

where ρm and ρr denote the usual matter and radiation
energy densities, and ρgeo is an effective geometric con-
tribution sourced by the extrinsic curvature sector.
A key feature of the geometric contribution is the ap-

pearance of an integration constant or attractor solu-
tion corresponding to a stationary expansion rate. Once
matter and radiation have sufficiently diluted, the back-
ground evolution approaches

H(τ) → Hstn = const. (26)

More generally, slow evolution of background embedding
parameters yields a quasi-stationary weakening attractor,
for example

H(τ) ≃ Hstn (1− ϵ ln(τ/τ0)) , |ϵ| ≪ 1. (27)

This remains strictly accelerating (ä > 0) and non-
phantom. This solution represents a de Sitter–like phase
driven entirely by embedding geometry, without invoking
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a bare cosmological constant or vacuum energy. Physi-
cally, it corresponds to a state in which the large-scale
extrinsic geometry of spacetime supports a persistent ex-
pansion rate even in the absence of significant matter or
radiation.

D. Stationary and oscillatory components of the
expansion

While the stationary solution (26) controls the dom-
inant late-time behavior, small departures from per-
fectly homogeneous embedding motion can excite co-
dimensional modes with extremely long wavelengths.
These modes introduce subdominant time-dependent
corrections to the expansion rate. It is therefore natu-
ral to decompose the late-time Hubble parameter as

H(τ) = Hstn +Hosc(τ), (28)

whereHstn is the stationary (or slowly varying) geometric
component andHosc encodes oscillatory or slowly varying
modulations.

For intuition, these may be referred to as the DC and
AC components of the expansion, respectively. A repre-
sentative phenomenological template for the oscillatory
contribution (expressed in redshift) is

H(z) = Hstn [1 +A cos(ω ln(1 + z) + ϕ)] , (29)

with amplitude A ≲ 0.01, frequency ω ∼ 1–3, and phase
ϕ determined by the properties of the excited embedding
modes. Such small coherent modulations are testable
with upcoming BAO and supernova surveys (e.g., DESI,
Euclid).

The smallness of the oscillatory contribution is para-
metrically small,

|Hosc| ≪ Hstn, (30)

and therefore modulates rather than drives the acceler-
ated expansion.

The DC component controls the overall acceleration
and sets the cosmic timescale, while the AC component
reflects residual geometric fluctuations seeded during the
exit from inflation. Crucially, the stationary and oscilla-
tory components arise from different aspects of the em-
bedding geometry. The stationary component Hstn re-
flects a global geometric attractor or conserved quantity
associated with large-scale embedding dynamics, while
the oscillatory componentHosc is seeded by small nonuni-
formities, for example during the exit from inflation. As
a result, the characteristic timescale of cosmic accelera-
tion and the amplitude of oscillatory corrections need not
be tightly correlated.

E. Interpretation and robustness

In the embedded-spacetime framework, sustained late-
time acceleration is controlled primarily by the stationary

component Hstn. The oscillatory component represents
a modulation of the expansion rather than its source and
cannot by itself account for the observed magnitude of
cosmic acceleration. This separation clarifies the physical
role of embedding fluctuations and avoids confusion with
models in which oscillations are invoked as the primary
driver of acceleration.
The action (23) should be regarded as an effective de-

scription. Whether the stationary late-time attractor
arises from explicit extrinsic curvature invariants, as writ-
ten here, or from constraint dynamics and conserved ge-
ometric quantities in the spirit of Regge–Teitelboim em-
bedding gravity remains an open question. In either case,
the emergence of a stationary or quasi-stationary expan-
sion phase appears to be a generic feature of embedded
spacetime dynamics.

F. Weakening acceleration versus future
contraction

Recent phenomenological analyses have emphasized
the possibility that the effective late-time cosmic acceler-
ation may be weakening, rather than remaining strictly
constant. It is therefore essential to distinguish carefully
between three logically distinct dynamical regimes: (i)
sustained accelerated expansion, (ii) weakening accelera-
tion, and (iii) genuine deceleration or contraction.
Although these possibilities are often conflated in ob-

servational discussions, they correspond to sharply dif-
ferent conditions in the present geometric framework.
a. Acceleration, deceleration, and contraction. The

background expansion is governed by the scale factor a(τ)
and the Hubble parameter

H(τ) ≡ ȧ

a
, (31)

where overdots denote derivatives with respect to proper
time τ . The condition for accelerated expansion is

ä > 0 ⇐⇒ Ḣ +H2 > 0. (32)

Deceleration corresponds to ä < 0, while true contraction
requires the stronger condition

H(τ) < 0. (33)

A weakening of acceleration therefore does not imply con-
traction unless H(τ) itself crosses zero.
b. Stationary and weakening geometric attractors.

In the simplest realization of the geometric sector dis-
cussed in Sec. V, the late-time evolution approaches a
stationary attractor,

H(τ) → Hstn = const > 0, (34)

which yields eternal accelerated expansion with

ä

a
= H2

stn. (35)
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More generally, however, the attractor may be quasi-
stationary, allowing a slow temporal drift,

H(τ) = Hstn(τ),

∣∣∣∣∣Ḣstn

H2
stn

∣∣∣∣∣ ≪ 1. (36)

In this regime the expansion remains accelerated pro-
vided

Ḣstn > −H2
stn, (37)

even though the magnitude ofH(τ) decreases slowly with
time. This corresponds to a weakening-attractor phase:
cosmic acceleration persists, but its effective strength
gradually diminishes. Importantly, such behavior is
generic in geometric systems with large-scale collective
degrees of freedom. Slow drift of the attractor reflects
gradual redistribution of geometric momentum or rigid-
ity in the embedding sector rather than the onset of in-
stability or fine tuning.

c. Role of oscillatory embedding modes. The oscil-
latory component introduced in Sec. V,

Hosc(τ) = ε cos(ωτ + ϕ), ε ≪ Hstn, (38)

modulates the expansion rate but does not drive a tran-
sition to deceleration or contraction. To leading order,

Ḣosc ∼ εω, (39)

which remains subdominant so long as

εω ≪ H2
stn. (40)

Thus, long-wavelength embedding modes generically pro-
duce small ripples in the expansion history rather than
qualitative changes in its long-term behavior.

d. Conditions for future contraction. A future con-
tracting phase requires a much stronger condition: the
stationary component itself must cross zero,

Hstn(τ∗) = 0, (41)

and subsequently become negative. Such behavior does
not arise generically from the geometric action intro-
duced in Sec. V. It would require either a reversal of
the large-scale geometric momentum of the embedded
spacetime or additional dynamical ingredients beyond
the minimal embedding sector considered here. We
therefore emphasize that a weakening of cosmic accel-
eration does not imply an impending recollapse. In the
embedded-spacetime framework, weakening acceleration
corresponds to a slowly evolving geometric attractor that
remains strictly non-phantom and expanding.

e. Connection to BAO and supernova likelihood anal-
yses. Observational constraints on late-time expansion
are commonly reported in terms of the Hubble rate H(z),
the comoving angular-diameter distance DM (z), and the
luminosity distance DL(z). Baryon acoustic oscillation
(BAO) measurements directly constrain

DH(z) ≡ 1

H(z)
, DM (z) =

∫ z

0

dz′

H(z′)
, (42)

while Type Ia supernova observations probe

DL(z) = (1 + z)DM (z). (43)

In the stationary-attractor limit,

H(z) ≃ Hstn, (44)

the expansion history is indistinguishable from that of a
cosmological constant over the redshift range probed by
current BAO and SN data. A weakening-attractor phase
corresponds instead to a slowly varying Hubble rate,

d lnH

d ln a
= O(ϵ), |ϵ| ≪ 1, (45)

which induces small, smooth deviations from ΛCDM in
DH(z) and DM (z) without introducing phantom behav-
ior or rapid evolution. In effective-fluid language, one
may define

weff(z) ≡ −1− 2

3

d lnH

d ln a
, (46)

so that weakening acceleration corresponds to

−1 < weff(z) ≲ −1 +O(ϵ), (47)

with a mild redshift dependence. Such behavior lies
squarely within the class of models explored in joint BAO
and supernova likelihood analyses and does not imply de-
celeration or future contraction. From the perspective of
the embedded-spacetime framework, this observational
situation is natural. Geometric acceleration is expected
to weaken first through slow drift or small oscillatory
modulations of H(z) rather than through abrupt changes
of sign. Future BAO measurements with improved preci-
sion, therefore, offer a direct probe of the large-scale em-
bedding dynamics without requiring exotic matter com-
ponents.

V. CONSTRAINT-BASED EMBEDDING
DYNAMICS IN CODIMENSION TWO

A central question raised in recent discussions is
whether the late-time accelerating attractor described in
Sec. V can arise purely from embedding constraints, in
the spirit of Regge–Teitelboim (RT) gravity, without in-
voking explicit rigidity or extrinsic-curvature terms. In
this section we analyze this possibility explicitly for the
physically relevant case of codimension two, correspond-
ing to two bulk embedding coordinates.

A. RT formulation and embedding constraints

In RT gravity, spacetime is described as a four-
dimensional manifold embedded in a flat ambient space,
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with dynamics governed by the Einstein–Hilbert action
expressed in terms of embedding variables,

SRT =
M2

Pl

2

∫
d4x

√
−g R[g(X)] + Sm. (48)

Variation with respect to the embedding functions
XA(xµ) yields the RT equations,

∇µ

(
Gµν∂νX

A
)
= 0, (49)

which supplement the usual Einstein equations with ad-
ditional constraint structure. These equations ensure
conservation of the Einstein tensor projected along the
embedding directions but introduce no new local propa-
gating degrees of freedom beyond general relativity.

B. Homogeneous codimension-two embeddings

We specialize to homogeneous and isotropic cosmol-
ogy with codimension two, parameterized by two bulk
embedding coordinates,

Y (τ), Z(τ), (50)

orthogonal to the four-dimensional spacetime manifold.
The induced metric on the manifold is of FRW form,

ds2 = −dτ2 + a2(τ) dΣ2
k, (51)

with k = +1 corresponding to compact spatial sections,
as advocated in the constraint-based approach. The RT
equations imply conservation of a geometric momentum
current associated with translations in the ambient space.
For homogeneous embeddings this reduces to two con-
served quantities,

PY = a3G00Ẏ , PZ = a3G00Ż, (52)

where overdots denote derivatives with respect to proper
time τ . These quantities encode the collective motion of
spacetime in the two normal directions.

C. Absence of a late-time accelerating attractor

In the absence of explicit rigidity or extrinsic-curvature
terms, the conserved momenta (52) are diluted by the
expansion as

Ẏ , Ż ∝ 1

a3G00
. (53)

At late times, when matter and radiation dilute and
G00 ∼ H2 becomes small, this scaling forces the bulk
velocities to decay rapidly. As a result, the embedding
motion asymptotically freezes rather than sustaining a
finite geometric contribution to the expansion. Substi-
tuting this behavior into the Friedmann equation yields

H2(τ) −→ 1

3M2
Pl

(ρm + ρr) , (54)

with no residual constant or slowly varying term. Thus,
pure RT constraint dynamics in codimension two do not
produce a stationary or quasi-stationary accelerating at-
tractor at late times. This result is robust and indepen-
dent of the choice of spatial curvature k or initial condi-
tions. Without additional geometric structure, the em-
bedding degrees of freedom redshift away too efficiently
to support sustained acceleration.

D. Implications for early-time inflation

A similar conclusion applies to the early Universe.
While ultrarelativistic bulk motion can generate strong
time dilation and mimic inflationary behavior kinemat-
ically, constraint-based RT dynamics alone do not sta-
bilize this phase. In codimension two, small deviations
from perfect ultrarelativistic motion feed back rapidly
through the constraints, preventing a prolonged period
of constant physical Hubble rate without additional con-
trol parameters. In other words, RT constraints alone
permit transient inflation-like behavior
but do not naturally yield a long-lived inflationary

phase with controlled exit and predictive perturbations.

E. Role of rigidity or conserved geometric charge

The analysis above clarifies the role played by the
extrinsic-curvature sector introduced in Sec. V. Rigidity
terms, or an equivalent conserved geometric charge asso-
ciated with the embedding, prevent the rapid dilution of
embedding momentum and allow the system to approach
a stationary or slowly drifting attractor,

H(τ) → Hstn(τ). (55)

From this perspective, rigidity should not be viewed
as an ad hoc modification but as the minimal ingredi-
ent required to stabilize collective embedding dynam-
ics in an expanding universe. We emphasize that the
physical requirement is not the specific form of the
extrinsic-curvature invariants or the values of the co-
efficients α and β, but rather the existence of a con-
served or weakly evolving geometric quantity capa-
ble of supporting late-time acceleration. Any micro-
scopic mechanism—constraint-based or otherwise—that
achieves this goal would lead to qualitatively similar cos-
mological behavior.

F. Summary of the codimension-two test

The codimension-two RT analysis leads to a clear con-
clusion:

• Constraint-based embedding dynamics alone do
not support sustained inflation or late-time accel-
eration.
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• Ultrarelativistic bulk motion can generate transient
time-dilated expansion but is not dynamically sta-
bilized.

• A rigidity term or equivalent conserved geomet-
ric charge is required to produce the stationary or
weakening-attractor behavior compatible with ob-
servations.

Thus, while the RT framework provides a powerful geo-
metric foundation, additional large-scale geometric struc-
ture is essential for a complete cosmological model. The
extrinsic-curvature sector introduced in this work sup-
plies precisely this structure in a minimal and physically
transparent manner.

VI. LINEAR PERTURBATIONS FROM
EMBEDDING FLUCTUATIONS

In an embedded description of spacetime, perturba-
tions are not restricted to intrinsic metric fluctuations.
The embedding itself introduces unavoidable physical de-
grees of freedom corresponding to deformations of the
spacetime manifold in directions normal to the embed-
ding. These co-dimensional modes are absent in purely
intrinsic formulations of gravity and play a central role in
the present framework. In this section we show that em-
bedding fluctuations provide a natural origin for primor-
dial cosmological perturbations during inflation and lead
to distinctive predictions for scalar and tensor modes.

A. Normal fluctuations of the embedding

We expand the embedding functions around a homo-
geneous background configuration X̄A(xµ) as

XA(xµ) = X̄A(xµ) + nA
I (x

µ) ξI(xµ) + · · · , (56)

where nA
I are orthonormal unit vectors normal to the

background spacetime manifold and ξI(xµ) are scalar
fields describing transverse displacements of the mani-
fold in the ambient space. These fields are invariant un-
der reparametrizations of the intrinsic coordinates and
therefore represent genuine physical degrees of freedom.
At linear order, the ξI encode bending of spacetime in
the ambient space and are distinct from the usual scalar,
vector, and tensor perturbations of the induced metric.

B. Quadratic action for embedding modes

Expanding the geometric action to quadratic order in
the embedding fluctuations yields an effective action of
the form

S(2) =
1

2

∑
I

∫
dτ d3x a3(τ)

[
ξ̇2I − (∇ξI)

2

a2
−m2

eff ξ2I

]
,

(57)

where overdots denote derivatives with respect to proper
time τ and m2

eff is an effective mass determined by the
background extrinsic curvature and geometric rigidity
parameters. Generically, m2

eff = O(H2). Fourier decom-
posing,

ξI(τ,x) =

∫
d3k

(2π)3
ξI,k(τ) e

ik·x, (58)

each mode satisfies

ξ̈I,k + 3H ξ̇I,k +

(
k2

a2
+m2

eff

)
ξI,k = 0. (59)

C. Behavior during the inflationary phase

During the inflationary phase driven by embedding-
induced time dilation, the background evolution is ap-
proximately de Sitter,

H(τ) ≃ Hinf = const. (60)

Provided m2
eff ≪ H2

inf , the embedding fluctuations be-
have as light scalar fields. Modes with physical wave-
length k/a ≫ Hinf oscillate as in flat space, while modes
with k/a ≪ Hinf freeze out with nearly constant ampli-
tude. The resulting power spectrum for each light em-
bedding mode is

Pξ(k) ≃
(
Hinf

2π

)2 (
k

k∗

)nξ−1

, (61)

with spectral tilt

nξ − 1 ≃ −2ϵH − 2

3

m2
eff

H2
inf

, (62)

where ϵH ≡ −Ḣ/H2.

D. Conversion to curvature perturbations

Embedding fluctuations modulate the local expansion
history by inducing small variations in the lapse and
embedding-time expansion rate. This leads to curvature
perturbations through a geometric analogue of the δN
mechanism. At leading order, the comoving curvature
perturbation ζ is

ζ ≃
∑
I

∂Ne

∂ξI
δξI , (63)

where Ne is the number of inflationary e-folds. The re-
sulting curvature power spectrum is

Pζ(k) ≃
(
Hinf

2π

)2 (
k

k∗

)ns−1

, (64)

with

ns − 1 ≃ −2ϵH − 2

3
γ, γ ≡ m2

eff

H2
inf

. (65)
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E. Tensor perturbations

Tensor perturbations correspond to intrinsic
transverse–traceless fluctuations of the induced metric.
Because inflation in this framework is driven primarily
by time-dilation effects rather than by a large intrinsic
energy density, tensor modes are generically suppressed.
Parametrically, the tensor-to-scalar ratio takes the form

r ∼ H2
inf

M2
Pl

S, (66)

where S ≪ 1 is a suppression factor reflecting the weak
coupling between bulk-induced kinematics and intrinsic
tensor modes. The tensor-to-scalar ratio is naturally low,
r ≪ 0.01.

F. Late-time embedding modes

Ultra-long-wavelength embedding fluctuations can
persist to late times and reappear as co-dimensional
modes modulating the expansion history. Such modes
contribute a subdominant oscillatory component to the
Hubble rate,

H(τ) = Hstn + ε cos(ωτ + ϕ), (67)

with ε ≪ Hstn. Observation of such oscillatory signatures
would provide a direct probe of embedding dynamics,
potentially producing detectable coherent ripples in low-
redshift distance-redshift relations distinguishable from
ΛCDM by joint analyses of current and upcoming data
(e.g., DESI, Euclid).

VII. RELATION TO OTHER BRANE-WORLD
AND EMBEDDING SCENARIOS

The framework developed in this work involves extra
dimensions and an embedded description of spacetime,
and it is therefore important to clarify how it differs from
other higher-dimensional and brane-world approaches to
cosmology. Although these frameworks share certain geo-
metric ingredients, their physical interpretation and cos-
mological consequences are fundamentally distinct.

A. Comparison with ADD and Randall–Sundrum
models

In conventional brane-world scenarios such as the
Arkani-Hamed–Dimopoulos–Dvali (ADD) model and the
Randall–Sundrum (RS) constructions, extra dimensions
are introduced primarily to modify the gravitational sec-
tor. In ADD models, large flat extra dimensions lower
the effective Planck scale and address the hierarchy prob-
lem, while cosmological evolution is governed by modified
Friedmann equations arising from higher-dimensional

gravity. In Randall–Sundrum models, warped extra di-
mensions and brane tension localize gravity and generate
an effective four-dimensional description.
In all of these scenarios, cosmic acceleration—when

present—is sourced by vacuum energy, brane tension,
bulk curvature, or explicit matter fields. Extra dimen-
sions alter the strength or localization of gravity rather
than introducing new kinematic degrees of freedom for
spacetime itself.
By contrast, the framework presented here assumes a

flat ambient Minkowski bulk and does not rely on brane
tension, warped geometries, or bulk curvature. The grav-
itational coupling on the spacetime manifold is not mod-
ified by the presence of extra dimensions. Instead, the
essential new physics arises from the fact that spacetime
itself is treated as a dynamical object capable of collec-
tive motion and deformation in the normal directions of
the ambient space. As a result, cosmic acceleration in the
present framework is not sourced by vacuum energy or
brane tension. Inflation arises from embedding-induced
time dilation associated with ultrarelativistic bulk mo-
tion, while late-time acceleration emerges from large-
scale embedding dynamics and geometric attractors. Ex-
tra dimensions therefore modify cosmic kinematics rather
than the gravitational field equations.

B. Relation to Regge–Teitelboim embedding
gravity

The present work is more closely related in spirit
to Regge–Teitelboim (RT) embedding gravity, in which
general relativity is formulated as a theory of a four-
dimensional spacetime surface embedded in a higher-
dimensional flat space. RT gravity demonstrates that
Einstein’s equations can arise from an embedding princi-
ple subject to additional constraints, without introducing
new local degrees of freedom at the level of intrinsic ge-
ometry.
However, the cosmological implications of the embed-

ding degrees of freedom are largely unexplored in the
RT framework. In particular, the distinction between
embedding time and proper time, and the possibility of
strong time-dilation effects, play no explicit role in stan-
dard RT treatments. Similarly, long-wavelength collec-
tive modes of the embedding are typically constrained
away or treated as gauge artifacts.
In contrast, the framework developed here treats the

embedding degrees of freedom as physically relevant and
dynamically active. Two features are especially impor-
tant: (i) the explicit separation between embedding time
and proper time, which allows strong time-dilation effects
and leads naturally to inflation, and (ii) the existence
of ultra-long-wavelength co-dimensional modes that can
persist over cosmological timescales and influence late-
time expansion.
While rigidity terms or equivalent geometric struc-

tures are natural in effective descriptions of embedded
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manifolds, our key results do not depend sensitively on
the detailed microscopic origin of these terms. Whether
the late-time geometric attractor arises from explicit
extrinsic-curvature invariants or from conserved quanti-
ties associated with embedding constraints, in the spirit
of RT gravity, remains an open question.

C. Conceptual distinction and physical
interpretation

The essential distinction between the present frame-
work and conventional brane-world cosmologies can be
summarized succinctly. In standard brane-world models,
extra dimensions modify the gravitational sector by al-
tering coupling strengths, introducing new energy scales,
or changing bulk geometry. In the embedded-spacetime
framework developed here, extra dimensions modify the
allowed motions of spacetime itself. Cosmic acceleration
then appears not as an additional energy component but
as a geometric consequence of embedding kinematics and
dynamics.

Inflation, late-time acceleration, and possible oscilla-
tory signatures correspond to different dynamical regimes
of a single underlying structure: a four-dimensional
spacetime manifold undergoing collective motion and
deformation in a higher-dimensional flat background.
This perspective allows phenomena that are traditionally
treated as unrelated—inflation, dark energy, and long-
wavelength anomalies—to be understood within a unified
geometric framework.

VIII. DISCUSSION AND CONCLUSIONS

We have developed a cosmological framework in which
both early- and late-time cosmic acceleration arise from
the geometry and kinematics of spacetime embedded in
a higher-dimensional flat background. In this picture,
spacetime is not merely a four-dimensional manifold en-
dowed with intrinsic curvature, but a dynamical sur-
face capable of collective motion and deformation in co-
dimensional directions. Intrinsic and extrinsic geome-
try are inseparably linked, and the embedding degrees of
freedom play a direct physical role in cosmic evolution.

A central result of this work is the demonstration
that a genuine phase of inflation can arise purely from
embedding-induced time dilation. When the spacetime
manifold undergoes ultrarelativistic motion in transverse
directions of the ambient space, proper time along the
manifold advances very slowly relative to embedding
time. Provided the embedding-time expansion rate re-
mains approximately constant, this kinematic effect leads
to strict exponential growth of the scale factor with re-
spect to proper time,

a(τ) ∝ eHinfτ , (68)

as derived explicitly in Sec. III. This inflationary phase
satisfies the defining criterion of inflation, including a
shrinking comoving Hubble radius, and resolves the hori-
zon and flatness problems without invoking an inflaton
field, scalar potential, or slow-roll dynamics. A grace-
ful exit arises naturally as bulk velocities decrease and
proper time resumes normal flow.
Following inflation, the Universe transitions smoothly

to a standard radiation- and matter-dominated
Friedmann–Robertson–Walker phase. Although the
lapse relaxes to order unity, the embedding geometry
retains memory of its early evolution. This memory is
encoded in large-scale geometric quantities and weakly
excited co-dimensional modes seeded during the exit
from inflation.
At late times, once conventional energy densities have

sufficiently diluted, the large-scale embedding dynamics
become dynamically relevant. We have shown that a ge-
ometric expansion attractor generically emerges, charac-
terized by a stationary or quasi-stationary Hubble rate,

H(τ) = Hstn +Hosc(τ), (69)

where Hstn sets the mean expansion timescale and Hosc

represents a subdominant oscillatory modulation. The
existence of this attractor provides sustained late-time
acceleration without invoking a bare cosmological con-
stant or vacuum energy. Importantly, a slow weakening
of the acceleration does not imply an eventual transition
to contraction; contraction requires the stationary com-
ponent itself to cross zero, which does not occur generi-
cally in the embedding dynamics studied here.
The framework admits a natural theory of cosmolog-

ical perturbations. Transverse embedding fluctuations
behave as light scalar degrees of freedom during infla-
tion and generate nearly scale-invariant curvature per-
turbations via a geometric analogue of the δN mecha-
nism. The scalar spectral tilt is controlled by slow vari-
ation of the Hubble rate and by dimensionless geomet-
ric parameters, while tensor perturbations are generically
suppressed. This suppression follows from the fact that
inflation is driven by bulk kinematics rather than large
intrinsic energy density, and from the weak coupling be-
tween ultrarelativistic embedding motion and intrinsic
transverse–traceless modes.
An important conceptual distinction between the

present framework and conventional brane-world or
modified-gravity scenarios is that the ambient space is
flat and extra dimensions do not modify gravitational
couplings or introduce new energy scales. Instead, ex-
tra dimensions enlarge the space of allowed motions of
spacetime itself. Inflation, late-time acceleration, and
possible oscillatory signatures then correspond to differ-
ent dynamical regimes of a single underlying structure:
a four-dimensional spacetime manifold undergoing col-
lective motion and deformation in a higher-dimensional
flat background.
Several open questions remain. First, while we intro-

duced a minimal effective action containing extrinsic cur-
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vature terms to capture late-time acceleration, the micro-
scopic origin of this geometric sector is not yet specified.
In particular, it remains to be determined whether the
late-time attractor can arise entirely from constraint dy-
namics or conserved geometric quantities, in the spirit of
Regge–Teitelboim embedding gravity, without invoking
explicit rigidity terms.

Second, a detailed treatment of reheating and matter
production following the inflationary phase is required to
complete the cosmological history. Third, more precise
predictions for non-Gaussianities, mode coupling, and
late-time observables will be necessary to fully confront

the framework with data.
Despite these open issues, the results presented here

establish that embedding geometry alone is sufficient to
reproduce the key qualitative features of the observed
Universe. Inflation, primordial structure, and late-time
acceleration need not be attributed to separate exotic
components but can instead emerge from the kinematics
and dynamics of spacetime itself. This perspective sug-
gests that the embedding of spacetime may play a more
fundamental role in cosmology than previously appreci-
ated and motivates further investigation of embedded-
manifold dynamics as a foundation for cosmic evolution.
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